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1 Introduction 

Modern large scale astronomy is, to a large extent, the science of non-Gaussian random fields. 
One of the keys to understanding the formation and evolution of structure in the Universe 
resides infact in the statistical properties of the matter field. Rival theories of structure 
formation predicts different statistical features, both in the present Universe and in the pri- 
mordial fluctuations encoded in the microwave background. To the scope of quantifying the 
statistical feature of the matter clustering, several techniques have been proposed. One of 
these, which is increasingly popular in astrophysics, is the estimation of parameters via the 
maximum likelihood method. For instance, the maximum likelihood method is currently 
widely employed in the analysis of cosmic microwave background (CMB) experiments, large 
scale surveys and cosmic velocity fields. Once a suitable likelihood function (LF) has been 
constructed, one estimates the best parameters simply by finding the maximum of the LF 
with respect to those parameters. The parameter estimates, say di(xi) (the hat is to distin- 
guish between the estimates and the theoretically expected parameters), are then functions 
of the data xi, i.e. of the random variables, and are therefore random variables themselves. 
If one is able to determine the distribution function P(&i) of the estimators, the confidence 
region (CR) of the parameters can be found as the value of the parameters for which the 
integral of P(&i) falls below a predetermined level. 

There are however two problems with this approach. One is that usually we don’t know 
how the data are distributed, and the usual Gaussian approximation may be very poor. 
This is the case, for instance, in large scale structure, where we already know that the 
density fluctuations are not Gaussian, even on fairly large scales. The second problem 
is that, even if we know perfectly well the data distribution, is often not trivial to find 
an analytical expression for the distribution P(&i) of the parameter estimators &i. Aside 
the simplest case in which one only needs the raw sample variance or the sample mean of 
normal variates (or closely related quantities), one has invariably to resort to very time- 
consuming MonteCarlo methods. While this second problem can be always overcome by 
numerical methods, the first difficulty remains, unless one takes into consideration specifically 
designed non-Gaussian models, and for each of these determines the confidence regions for the 
relevant parameters. Other than being too model-dependent, in the current astrophysical 
applications this procedure is in many cases prohibitevely slow. It is then of interest to 
examine alternatives able to retain the useful features of the likelihood method while allowing 
more freedom in exploring different non-Gaussian (non-G, for shortness) distributions. 

In this work we propose a perturbative method to estimate theoretical parameters when 
the higher-order multivasiate moments (or n-points correlation functions) are non-vanishing, 
via an expansion around a Gaussian LF, the multivariate Edgeworth expansion (MEE). As 
long as the perturbative approach does not break down, i.e. as long as the departure from 
Gaussianity is mild, the MEE gives an answer to the first problem, the distribution function 
of the data, because it allows arbitrary values of the higher-order correlation functions. Then 
we still are left with the second problem: how do we determine in the general case the distri- 
bution function for our paramater estimators, necessary to produce the confidence regions? 
A first simple possibility is to approximate the P(&i) around its peak, previously determined 
by maximization of the LF, by a Gaussian distribution, multivariate in the parameter spze. 
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This allows to determine an approximate covariance matrix, whose eigenvalues give the prin- 
cipal axis of the parameter CR (see e.g. Kendall, Stuart & Ord 1987). Notice that this is 
equivalent to assume the parameter estimators, which are functions of all the dataset, as 
Gaussian distributed, but makes no assumptions on the data themselves. When the number 
of data is large, this procedure can be justified by the central limit theorem (which however 
cannot guarantee the asymptotic Gaussianity in the general case). This first possibility, 
along with its limitations, is discussed in Sect. 3. To overcome the limits relative to the 
Gaussian approximation of the estimator distribution, and exploiting the analytic properties 
of the MEE, we adopt in Sect. 4 and Sect. 5 a second, exact, way to determine the CR for 
some of the relevant parameters. This is a non-Gaussian generalization of the x2 technique: 
instead of finding the CR by integration over the unknown distribution function of the sam- 
ple estimators, we determine the CR by integrating the LF over the possible outcomes of 
an experiment. As in the usual x2 method, the acceptable values of a parameter will be all 
those for which the data lie not too distant from the predicted values, the “distance” being 
measured by the quantity xx = xiXi’xj, where xi are the actual data and X’j is the inverse 
of the correlation matrix. The CR will in general depend on all the higher-order correlation 
functions included in the MEE, as it will be shown in Sect. 4. The formalism is then best 
suited to answer the question: how our results (i.e., best estimates and CR) change when 
the higher-order moments of the data distribution are not set to zero? If we have any reason 
to believe in some particular values for the non-G moments, then we can plot the CR for 
our parameters given those higher-order moments, and clearly the regions will be different 
for any set of higher-order moments. The relevance of examining how the confidence regions 
vary with respect to the non-G parameters is clear. Suppose in fact that two experiments, 
assuming Gaussianity, produce two non-overlapping CR for the same parameter, say the 
overall normalization of the correlation function. In general, the CR will be different in the 
non-Gaussian case, and it may happen that the two experiments are infact compatible when 
some level of non-Gaussianity is assumed. As we will show, in most cases the CR widens 
for positive higher-order moments, so that two non-overlapping results can be brought to 
agreement, provided some amount of non-Gaussianity is allowed. Other positive features of 
our formalism are that it exploits the full set of data, that it can be extended to higher and 
higher order moments, and that it is fully analytical. 

To the order to which we limit ourselves here, we will be able to estimate the first non- 
G correlation function, i.e. the third-order moments. This estimate will share the good 
and less good properties of likelihood estimators: they are consistent estimators, but only 
asymptotically (i.e., for large samples) unbiassed, as we will show in Sect. 3. For the fourth- 
order cumulant there is not an estimator at all, since the LF is linear in it. We decided to 
keep track of it anyway, because it is still interesting to use the fourth-order cumulant as an 
external parameter, and see how our results change with different assumptions on it. 

In principle one can include in the analysis all the set of higher-order moments considered 
relevant to the problem, but here we will limit ourselves to the first two higher-order terms, 
the 3- and 4-points correlation functions. For most purposes, this is the best we can do 
for comparing different models with observations, since current data do not permit accurate 
analysis of correlation functions of order higher than the fourth one. 

Let us remark that we call here likelihood function the probability distribution function 
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j(z;, cri) of the data xi (our random variables) defined in a sample space S, given some 
theoretical parameter oi, which can be thought to lie in the parameter space P. Essentially, 
for any point in the parameter space, i.e. for any distribution function, we will integrate 
the LF over the sample space S, i.e. over all the possible outcomes of the experiment, to 
determine how likely or unlikely is the possibility that the actual data set has arisen from such 
a parametric choice. For a discussion of the advantage and disadvantage of this approach 
with respect to the alternative Bayesan one, in which the integration occurs over the space of 
the theoretical parameters (as opposed to the sample estimators of the theoretical parameters 
considered in the frequentist approach), we refer to standard textbooks like Kendall, Stuart 
& Ord (1987). 

Beside presenting the basic formalism of the non-Gaussian LF, we discuss briefly in Sect. 
6 its application to large scale structure and to the CMB. In the first case the non-Gaussian 
nature of the galaxy distribution is a well-established fact, so that the use of a non-G LF is 
certainly required. In the case of CMB, the current set of data is still not accurate enough 
to assess the issue. The estimate of a confidence region in non-G models is however crucial 
in view of the discrimination among different theories of structure formation. 

2 Formalism 

Let d’ be a set of experimental data, i = 1, ..N, and let us form the variables xi = d’ - t’, 
where t’ are the theoretical expected values for the measured quantities. To fix the ideas, 
one can think of d’ as the temperature fluctuation in the i-th pixel in a CMB experiment, 
or as the number of galaxies in a given volume of the Universe. Let cij be the correlation 
matrix 

$ =< xixj > , (1) 

and let us introduce the higher-order cumulant matrices (or n-point correlation functions) 

k ijk = <xi&x’ > (skewness matrix), / (2) 
kijki = < 2i,$xkx1 , &jckl _ ,ik$ _ ,ii$*k (kurtosis matrix) (3) 

(we will sometimes use the words “skewness” and “kurtosis” to refer to the 3- and 4-point 
correlation functions, respectively, or to their overall amplitude; in the statistical literature, 
the definition of skewness is actually, in our notation, yi = kiii/(cii)3/2, and for the kurtosis 
72 = kiiii/(#)‘L)+ Th e correlation matrices depend in general both on a number of theoretical 
parameters oj, j = 1, ..P (that we leave for the moment unspecified) and on the experimental 
errors. In most cases, we can assume the experimental errors to be Gaussian distributed (or 
even uncorrelated) so that they can be completely characterized by the correlation matrix 
e’j, which is simply to be added in quadrature to the 2-point correlation function. It is useful 
to define then the matrix 

xij = ($ + eij)-l . (4 

The problem of estimating the parameters oj is solved by maximizing, with respect to the 
parameters, the likelihood function 

L = f(x) 1 (5) - 
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where j(x) is the multivariate probability distribution function (PDF) for the random vari- 
ables xi. Clearly, knowing the LF one can, at least in principle, determine also the parameter 
CR, as will be discussed in the next sections. The main difficulty to this approach, however, 
is that we do not know, in general, the exact form for the PDF f(x). The usual simplifying 
assumption is then that f(x) is a multivariate Gaussian distribution 

L,~ = f(x) = G(x, A) s (2n)-N’21X11/2 exp( -~X'x,z') . (6) 

where 1x1 = det(&j). This is usually assumed, for instance, in analysing the CMB fluctuation 
maps and the cosmic velocity fields. A straightforward way to generalize the LF so as to 
include the higher-order correlation functions, which embody the non-Gaussian properties 
of the data, is provided by the multivariate Edgeworth expansion (MEE). An unknown 
PDF f(x) can indeed be expanded around a multivariate Gaussian G(x, X) according to the 
formula (Chambers 1967; McCullagh 1984; Kendall, Stuart & Ord 1987) 

f(x) = G(x, A)[1 + $k”ihok(X, A) + &kijk’hijk-(X, A) + Ak”‘k’““hi..n(Xv A) + .**I 7 (7) 

where hij.. are Hermite tensors, the multivariate generalizations of the Hermite polynomial. 
If there are r subscripts, the Hermite tensor hij.. is said to be of order r, and is given by . - 

hij... = (-l)‘G-‘(~3 X)aij...G(x, A) 3 (8) 

where aij... = (a/6’xi)(a/axj).-.. The H ermite polynomials are located on the main diagonal 
of the Hermite tensors, when Xij = 6,. Notice that the function f(x) is normalized to unity, 
since the integrals of all the higher order terms from minus to plus infinity vanish. It can 
be shown that the MEE gives a good approximation to any distribution function provided 
that all the moments are defined and that the higher order correlation functions do not 
dominate over the Gaussian term. In other words, the MEE can be applied only in the 
limit of mild non-Gaussianity. More accurately, the approximation is good, in the sense that 
the error one makes in the truncation is smaller than the terms included, if the cumulants 
obey the same order-of-magnitude scaling of a standardized mean (Chambers 1967). This 
condition is satisfied, for instance, by the cumulants of the galaxy clustering in the scaling 
regime, which explains why the (univariate) Edgeworth expansion well approximates the 
probability distribution of the large scale density field (Juszkiewicz et al. 1994, Kofman & 
Bernardeau 1994). The same expansion has been also applied to the statistics of pencil- 
beam surveys, in which the one-dimensional power spectrum coefficients can be written as a 
genuine standardized mean (Amendola 1994). Finally, it has also been used to go beyond the 
Gaussian approximation in calculating the topological genus of weakly non-Gaussian fields 
(Matsubara 1994). Let us also note that the MEE lends itself to a further generalization: if 
the experimental errors are not Gaussian distributed, then the expansion for the data given 
the error correlation functions e’j.- is the same as in Eq. (7), but with the new cumulants 
h-ii.. = k’j- +eij**. In fact, let xf be the theoretical values whose measure is given by the data 
d’, and let [’ = d’ -xlf be the experimental error. The theoretical values are random variables 
in the sense that the theory usually predicts only their distribution, not their definite value. - 
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For instance, once the monopole is subtracted, the standard cosmological models predict 
CMB fluctuations Gaussian distributed with zero mean, t’ = 0. Then we are concerned with 
the distribution of xi = xi + (d’ - ’ XI,) = xf + [‘, the sum of the theoretical values x:f and of 
the experimental errors <‘, both of which are random variables. If the two are independent, 
the general theorems on the random variables ensure that the cumulunts cumulate, i.e. that 
the cumulants of xi are the sum of the ones of xf and of [‘. 

Two properties are of great help in dealing with the MEE. The first is that kijk*.* and 
hijk... are contra- and co-variant tensors, respectively, with respect to linear transformations 
of the variables xi. It follows then that f(x)d x is totally invariant with respect to the 
linear transformations which leave invariant the quadratic form x2 = X’Xijxj. This property 
is very useful, because we can always diagonalize the quadratic form by choosing a linear 
combination g = A~x’ such that x2 = X’Xijxj = #6ij$. The MEE in the new variables y’ 
remains formally the same as in Eq. (7), with x --t y and X -+ 6, but now G(y, 6) factorizes, 
and all the calculations are simplified. Notice that even if the new variables are uncorrelated, 
they are not statistically independent, since they are not (in general) Gaussian variates. The 
higher-order matrices are then not diagonalized. In the following we will often assume that 
the variable transformation has been already performed, so that we will write y and 6 instead 
of x and A, leaving all the other symbols unchanged. The second useful property is that 
the MEE is analytically integmble if the integration region is bounded by x2 = con&. This 
property will be exploited in Sect. 4. 

3 Best estimates and asymptotic confidence regions 

The likelihood estimates for the parameters are to be obtained by maximizing Eq. (7) with 
respect to the parameters. To illustrate some interesting points, let us put ourselves in the 
simplest case, in which all data are independent, and we only need to estimate the parameters 
cr and kg entering the 2- and 3-point correlation function as overall amplitudes: 

Gj = O*bij* k ij& = k36ijbjk. 6-o 

Because we are in such a simplified case, we will recover several well-known formulae of 
sampling statistics, like the variance of the standard deviation 0 and of k3. It is important 
to bear in mind, however, that the MEE is much more general than we are assuming in this 
section, since it can allow for full correlations among data, for experimental errors, and for 
non-linear parametric dependence. 

For simplicity, we also assume that the sample kurtosis is negligible. Because of this, we 
can put the fourth order sample cumulant of the dataset to zero (see, e.g., Kendall, Stuart 
& Ord 1987): 

. 

Icq = (N - l)(Nt 2)(N - 3) 
[(N + 1) c xf - 3( N - 1)(x x;)‘] = 0, (10) 

i i 

so that we have, for large N, 

Cd = 3(X XT)‘. (11) _ 
i i 

5 



We show here that the maximum likelihood estimators for the variance and for the skewness 
in the case of independent data and for N + 00 reduce to the usual sample quantities 

6* = Cxf/(N - l), 
i 

1 

k3 = 
(N-lfIN_2)~x” 

(12) 

We will assume also that the average has been subtracted from the data, i.e. that Ci xi = 0. 
This actually reduces the degrees of freedom, but in the limit of large N we can safely ignore 
this problem. If the distribution function of xi is approximated in the limit of small kg by 
the univariate Edgeworth expansion 

fi = G(xi, a)[1 + k3h3i/6 + kihci/72] , (14) 

where G(zi,a) is a Gaussian function, then the multivariate distribution function for the 
dataset is 

L(x)=n.fi- (15) 
i 

[In the notation of Eq. (8), h3i = hii; and hgi = hi..is] By the definition in (8) we have 

h 6j = U -“[xP - 152x: + 45a4x; - 1507 ) 

h3i = u-~[x~ - 3a*xi]. (16) 

Let us pause to evaluate the order-of-magnitude of the non-G corrections in the univariate 
Edgeworth expansion (14). Assuming xi N 0, the first correction term is of the order of yi f 
k3f a3, which is the dimensionless definition of skewness. The general rough requirement for 
the truncated Edgeworth expansion is then that 71 < 1. This condition will be encountered 
several times throughout this work. The maximum likelihood estimators for u and kg are 
then the values 6,& which maximize L, or, equivalently, its logarithm log L. We have then 
the equations 

dlogL dlog fi 
--yg-= ; da= c CT”] + $[Z?U*Xi - X3] + 5[50’ - 16a*~f + 5x:]} = 0, 

(17) 
and 

dlogL h3i k3 -= ki 
dk3 

s+s&i / l+y+zhGi I[ ~0. (18) 
To first order in kg, the latter equation gives hi k3 6 + zh6i - ~h:i 1 = 0, 

so that our estimator is 
A 
k3 = - 6 Ci h3i 

Ci[bi - hfi] ’ 

(19) 

(20) - 
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Suppose now that the solution for B of Eqs. (17) and (18) is the usual variance estimator 
(12), with N x N - 1. Then we can observe that, from (16), 

C hi = C h32i - 30~” (3x24 - 12a2~x;+5~a4) = ch;; -6Na-6, (21) 

where in the last step we used Eq. (11) and Eq. (12). Inserting (21) in (20) we obtain finally 
(assuming that Ci xi =: 0) 

L k3 _ ci h3i _ ci xf 

NC+ N ' 
(22) 

which coincides with (13) for large N. Finally, going back to Eq. (17), and inserting k3 = & 
we recover the sample variance 6’ = C; xf/N, so that our proof is complete. If needed, the 
small bias introduced by a finite N can be easily removed just multiplying is, L? derived from 
the likelihood method by suitable functions of N. 

The same calculation can be carried out in the more general case of dipendent variables, 
but the search for the maximum is more simply performed numerically when the situation is 
more complicated (e.g., because of the presence of experimental errors, or of more parameters, 
or more complicate parameter dependence). We just quote the result when only an overall 
skewness parameter is required, as when the 3-point correlation function is given by kijk = 
k3Sijk, and the tensor sij& is known (see Section 5). The best estimate for kg is then 

L 
k3 = -6 ._ 

@hijk 

S*Jkdmn hijklmn ’ 

which reduces to the expression above when sij& = 6ijbj&, using the relation 

c hiiW = c hi + (x h3;)* _ C h$ , 
ij i i 

(23) 

(24) 

and observing that (C h3i)* is of order 132, and thus negligible. 
Once we have the best estimators &i(x) of our parameters, we need to estimate the 

confidence regions for that paramaters, i.e. the range of values in which we expect to find 
our estimators to a certain probability, given that the data distribution is approximated 
by the MEE. The problem consists in determining the behavior of the unknown distribu- 
tion P[&i(x)], h w en we know the distribution for the random variables xi. This problem 
is generally unsoluble analitycally, and the common approach is to resort to MonteCarlo 
simulations of the data. However, we can always approximate P(&i) around its peak by a 
Gaussian distribution multivariate in the pammeter space; if the number of data N + 00, 
this procedure can be justified by the central limit theorem. For instance, if is = C x:/N, 
then its distribution will tend to a Gaussian whatever the distribution of the data xi is, in the 
limit of large N. In more general cases (e.g. correlated data) the central limit theorem does 
not guarantee the asymptotic Gaussianity; we can expect however it to be a first reasonable 
approximation far from the tails. If this approximation is adopted, then it can be shown 
(see e.g. Kendall, Stuart & Ord 1987) that the covariance matrix of the parameters can be 
written as 

c,-,l = - 
ah&wa) 

da,acr~ I a.=&. ’ (25) - 
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where a, b run over the dimensionality P of the parameter space. The la confidence region 
is then enclosed inside the P-dimensional ellipses with principal axis equal to AA/*, where 
A, are the eigenvalues of Cob. Let us illustrate this in the same simplified case as above: 
N independent data characterized by variance cki = u and skewness ckz = k3. To further 
simplify, we assume that the mixed components Cl2 = Czi can be neglected (see below). 
The component C22 is then easily calculated as 

CFi = - C hiiijjj/36 9 
ij 

(26) 

Thus, using Eq. (24), the variance of is turns out to be (dropping the hats here and below) 

X2* = 6a6/iV , (27) 

which, not unexpectedly, is the sample skewness variance, i.e. the scatter in the skewness 
of Gaussian samples (for the dimensionless skewness defined as yi = k3/a3 the variance is 
6/N). In other words, to this order of approximation, the variance in the sample skewness 
in non-G data equals the variance in the sample skewness of Gaussian distributed data. The 
generalization to dependent data is 

cz = -Si’kS’mnhijklm,/36 (28) 
a 

which gives then the variance of the estimator k3 in the general case. 
More interesting is the error in the variance parameter cr when not only a non-zero 

skewness k3 is present, but also a non-zero kurtosis parameter k4, defined in a way similar to 
k3 a~ kijkl = k4Sijkla Then the result turns out to be, in the same approximations as above, 

Cl1 = & [1+ ?*/2] 1 (29) 

where cy2 = k 4 / g4 
c,-,’ = 

is the dimensionless kurtosis. The mixed components amount to C,-,’ = 
-Nks/a’. Then we see that in the determinant of C,b we have [C;;‘]’ << [Ci,‘Cz] for 

k3/a3 < 1, which is again the mild non-Gaussianity condition we are assuming throughout 
this work. 

Eq. (29) is again an expected results: it is infact the variance of the standard deviation 
u for N independent data when a non-zero fourth-order moment is included. The first 
term in (29) is the usual variance of the sample variance for Gaussian, independent data. 
The second term is due to the kurtosis correction: it will broaden the CR for u when k4 
is positive, and will shrink it when it is negative. Depending on the relative amplitude of 
the higher-order corrections, the CR for the variance can extend or reduce. It is important 
however to remark that this estimate of the confidence regions is approximated, and that it 
can be trusted only around the peak of the likelihood function. This means that we cannot 
use the CR estimated by the method exposed here when we are interested in large deviations 
from the best estimates. The true CR will in general be more and more different from this 
simple estimate as its probability content grows: 
cannot reliably associate a CR of SC:!“, 

to a confidence level of, say, 99.7%, we 
as we would do were the P(hi) a perfect Gaussian 

distribution. 
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This limitation is the main motivation for the rest of this work. Adopting a x2 technique, 
we will be able to give an analytical expression for the CR of the variance (or of other 
parameters entering x2) when non-G corrections are present. This is useful whenever we 
actually measured non-vanishing higher-order cumulants and wish to quote a CR for the 
variance allowing for the non-Gaussianity, or when, more generally, we have’reason to suspect 
that our data are non-Gaussian and we wish to investigate how the CR vary with different 
non-Gaussian assumptions. As already remarked, non-Gaussianity can also be invoked to 
put in agreement two experimental results reporting non-overlapping CR. The results of the 
next sections will confirm the approximate trend of Eq. (29), as long as the CR does not 
extend into the tails of the paramater distribution. 

4 Non-Gaussian x2 method 

If our data are distributed following the MEE, then we can measure the likelihood to have 
found our actual dataset integrating the LF over all the possible outcomes of our experiment. 
According to the x2 method, the actual dataset is more likely to have occurred, given our 
assumptions, the higher is the probability to obtain values of x2 larger than the measured 
xi. Then the relevant integral we have to deal with is 

M(Xo) = /,z<,: L(X, A) n dxi , i 
(30) 

where the region of integration extends over all the possible data values which lie inside 
the region delimited by the actual value x i. The function M(xo) gives then the probability 
of occurrence of a value of x2 smaller than the one actually measured. We can then use 
M(xo) for evaluating a CR for the parameters which enter xf, like the quadrupole and the 
primordial slope in the case of CMB. The CR will depend parametrically on the higher-order 
moments; however, this will not provide a CR for the higher-order moments themselves. The 
method of the previous section can always be employed to yield a first approximation for such 
moments. Both too high and too small values of xi have to be rejected; fixing a confidence 
level of 1 - E, we will consider acceptables the values of the parameters for which M(xo) 
is larger than c/2 and smaller than 1 - ~/2. Notice that the theoretical parameters enter 
M(xo) both through the integrand L(x, X) and the integration region $. This section is 
devoted to the evaluation of (30). 

Let us split the LF into a Gaussian part and a non-G correction, 

L = L, + L,, . 

The integral of the Gaussian part is the standard one, and it is easily done: 

/G(x*X)IIdXi = /G(Ys6)ndyi = 1” PN(x*)dx* = pN(xo), 
i i 

(31) 

where PN(x*) is the x2 PDF with N degrees of freedom, and FN its cumulative integral. 
Notice that the integral has been performed over a compact region in x-space whose boundary - 
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is x * = * x0. It is then convenient to change variables in the integral, from yj to the hyperradius 
x2 and N - 1 angles 

Jn dxi + f J (x2)‘-Ld(x2)dCl 
i 

= + ~(x2)~-‘d(x2), (33) 

where p = N/2 and AQ, = 27rP/lS’(p) (the surface area of a unitary (N - 1)-sphere). The 
same procedure will be applied several times in the following. 

For the non-G sector we have to consider separately the three last terms in the MEE 
(7). However, since it will be shown shortly that the term linear in the skewness does not 
contribute to the final result, we will focus only on the two last terms in the MEE. Let us 
consider the term in kijk’. Its integral can be written as 

K= ki’Iix) J G(X, X)hijkr(x, X) n dxi 
i 

= 

kijkl( y) kW( y) 

24 J G(Y, 6)hjkl(Y, 6) n dyi = 24 J aiaja&a, n Gidyi , (34) 
i i 

where Gi = (2?r)-‘/* exp( -$/2) an d h w ere the kurtosis tensor k’j” in the first line is to be 
calculated with respect to xi, while in the last line with respect to y’. Since y’ = Aaxa, then 

k+“(y) = A;A;AfA;kati(x), (35) 

and likewise for k’j”. Suppose now one of the subscripts, say i, appears an odd number of 
times, like in k”‘j. Let us call then i an odd index. The integral K will then be odd in 3;. 
Since the integration region is symmetric around the origin, K would vanish. This shows 
that any term in K containing odd indexes of kijk’ must vanish. This explains also why 
the skewness term hijk, which always contains some odd index, gives no contribution to the 
likelihood integral. The only non-zero terms in K are then of the type kjjkk and kjjjj (the 
index order is irrelevant). We then need only two kinds of integrals for as concerns K. Let 
us evaluate the first kind: 

11 = / JJk G,dy,[/ dYjdYk$@GjGk] - (36) 

The inner integral must be evaluated inside the circle bounded by $& = xi - x$, where 
$k = C(i#j,k) Y. r. Transforming.the variables (Yj, y&) to the radius pj& and the angle 8, and 
integrating over the new variables, we obtain 

II = J( II Gidyi)G2(~jk)fl(~jk) = GN(XO) J fi(pjk) n dyi , (37) 

ifi& ifi& 

where we define Go = (2rr)-N/2exp(-x~/2), and where 

flbjk) = *(4& - p$)/4 . (38) - 

10 



Changing again variables under the integral to the hyperradius xit and N - 3 angles, we 
obtain 

I1 = ~Gdxobb Jd 
4 

fd~jd(x;d~-~~x;k = dxo)G~(xo), (39) 

where p2 = (N - 2)/2, and where 

!zl(XO> = N’2xt[N + 2 - x:1/w + N/2) * (40) 

All the other integrals we need can be obtained in similar ways. For instance, the second 
kind of non-vanishing integral in K is 

I2 = J II Gid3i[/dy,~~Gj1 = ~GN(x.o)Az~, 1” f2(~j)(x~)p’-1dx~ = Q~(xo)GN(xO), (41) ifi 
where pl = (N - 1)/2 and 

q2(xo) = ;rN12x: [N + 2 - xi] /r(2 + N/2). (42) 

For as concerns the last term in (7), we need only to evaluate three new integrals, from the 
terms hjjkkllt hjjjjkk ad hj...j* Let us denote these integrals by &,I4 and 1s. In complete 
analogy to the two integrals 1i,12, we find 1; = GN(Xe)Qi(XO) where . 

Q3CXo) = IrN12#h(xo) 

3” 

, 

dxo) = qaN'2x:h(xo), 

%(X0) = ‘;i-” l5 N’2xi$‘h(xo), (43) 

and where 
4 

h(xo) = - 
[ 

4 4%; 
lY(l+N,2) + l?(2+N,2) - &N,2) ’ 1 (44) 

These expressions are all what we need for the complete evaluation of the likelihood 
integral. The general result is then 

M(xo) = J L n dzi = FN(xO) 

+ GN(XO)*~‘~X{ 
2r(2 + N/2) 

G(N+2-+cb -N-2+2&- 
( 

(45) 

where C, = cl -I- 3~2, and Gb = c3 + 3~4 + 15~5, and the coefficients ci are formed by 
summing over all the even diagonals of the correlation tensors k’j-* and multiplying for the 
Edgeworth coefficients (l/24) for cl, c2 and (l/72) for ~3, c4 and q. Let us denote with 
Trab..(kij...) the sum over all the disjoint partitions of a-plets, b-plets, etc. of equal indexes: 
e.g., Tr22(kijkl) means summing over all terms like kiikk, kikik, kikki but without including kiiii; - 
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or, Trz4(kijkkfmn) means summing over terms like kiiikijj or k”jkj”. Then, the coefficients ci 
in Eq. (45) can be written as 

Cl = ( 1/24)Tr22( k’j”‘) , c2 = ( 1/24)Tr4(k’ik’) , 

c3 = (1/72)Trzz2(kijkk’mn), c4 = (1/72)Tr24(kijkk’mn), 

C.5 = ( 1/72)Tr6(ki~“k’““) . (46) 

Let us make some comments on the result so far obtained. First, notice that M(xo) is 
a cumulative function and as such it has to be a monotonically increasing function of its 
argument bounded by zero and unity. This provides a simple way to check the consistency 
of our assumptions: when the higher-order moments are too large, the MEE breaks down, 
M(xe) is no longer monotonic, and can decrease below zero or above unity. Second, let 
us suppose that the higher-order correlation functions are positive, which is the case for 
the galaxy clustering (see Section 6). Then the non-G corrections in Eq. (45) are negative 
for xs >> N. The value of x0(~), corresponding to a probability content M(xo) = 1 - E, 
is a measure of how large is the confidence region associated with the threshold E, if ~0 
is single-valued on the parameter space, a common occurrence in practice. The fact that 
the corrections are negative for x8 >> N implies that the value of ~0 = x0(~) is larger 
than in the purely Gaussian case, in the limit of E ---) 0. Consequently, if the higher-order 
correlation functions are positive, the confidence regions are sistematicully widened when 
the non-Gaussian corrections are taken into account. For E not very close to zero is not 
possible to make such a definite statement; the regions of confidence will widen or narrow 
depending on the value of the moments, as will be graphically shown in the next section. 
Let us remember that for two-tail tests the CR is enclosed by the upper limit $)(e/2) and 
the lower limit #I(1 - e/2), and the limits behave differently depending on E and on the 
higher-order moments. Finally, it is easy to write down the result in the particular case in 
which all the cumulant matrices are diagonal, i.e. for statistically independent variables. 
In this case the variables y’ are simply equal to z:‘/ai, if bi = (Xi)-li2, and we can put 
kiii(y) = kiii(z)/a3 z yr,i, and likewise k”“(y) E Tz,i (skewness and kurtosis coefficients). 
Then, we have cl = c3 = c4 = 0, and Eq. (45) can be simplified to 

M(Xo) = FN(xO) + GN(Xo)!z(xo), (47) 

where 

GP~/~x: 
q(xo) = (N + 2)I’( N/2) 

r2 [(N + 2) - x;] + ;$ 
24 

-(N + 2) + 2~; - A]) , (48) 

and where we introduced the average squared skewness, 7: = C y&/N, and the average 
kurtosis, ~2 = C Tz,i/N. 

5 Graphical examples 

This section is devoted to illustrate graphically some properties of the function M(xo) in 
its simplified version (47) above, first putting yi = 0, then 72 = 0, and assuming N = 10 - 
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and N = 100. In all this section we can think of ~0 as depending monotonically on one 
single parameter, for instance the overall normalization A > 0 of the correlation function: 

X34 = z’cS(At+ +eij)-i. Then it appears that xi decreases from a finite, positive value to 
zero as A goes from zero to infinity. The range in which A is bounded increases or decreases 
with the bounding range of ~0; we can then speak of a CR on ~0 meaning in fact the 
corresponding CR on the parameter A. In the general case, the relation between ~0 and its 
parameters can be quite more complicated. In Fig. la (for yi = 0 and N = lo), we show how 
the function M(xo) varies with respect to the non-Gaussian parameter yz. Schematically, 
for xi/N > 1, the function M(xo) decreases when 72 > 0 and increases in the opposite 
case. As anticipated, for too large a yz, M(xo) develops a non-monotonic behavior. The 
consequence of the behavior of M(x 0 on the confidence region of ~0 is represented in Fig. ) 
1 b, where the contour plots of the surface M(xs, 72) are shown. Consider for instance the two 
outer contours, corresponding to M = .Ol, the leftmost, and A4 = .99, the rightmost. The 
important point is that the range of ~0 inside such confidence levels increases for increasing 72; 
with respect to the Gaussian case, 72 = 0, the acceptable region for ~0 widens substantially 
even for a small non-Gaussianity. As a consequence, a value as high as, say, xi/N = 2.5, 
is inside the 99% confidence level if 72 > .2. The same is true for the other contour levels, 
although with a less remarkable trend. This behavior confirms the approximate result of Eq. 
(29). As anticipated, this means that the non-G confidence regions will be larger and larger 
(if the higher moments are positive) than the corresponding Gaussian regions for higher and 
higher probability thresholds. Notice that in this case the parameter 72 itself cannot be given 
a CR, since as we already noticed the LF has no maximum when varied with respect to it. 
We can use 72 only as an external parameter, either provided by theory, or estimated from 
the data in some other way. Fig. 2a,b reports the same features for y1 = 0, N = 100. Now 
the confidence regions are much narrower, because of the increased number of experimental 
data. 

The situation is qualitatively different considering 72 = 0 and varying yl, the average 
skewness. Fig. 3 and Fig. 4 are the plots for this case (N = 10 and N = 100, respectively). 
The contour levels are obviously symmetric for f~i. Now for any given x0 there is a CR 
for yi and viceversa, so that a bound can be given on each parameter given the other one, 
although the joint CR for both parameters is infinite. Now one can see two different features 
in the contour plots. For the outer contours, delimiting levels of 1% on both tails, the CR of 
~0 increases for larger /yrl, with a minimum for the Gaussian case. For the internal contours, 
however, the CR actually shrinks for larger ]yi I, being maximal at the Gaussian point. It is 
clear that in the general case, ri,7z # 0, the topography of the LF can be quite complicated. 

6 Comments on practical application 

The results of the previous sections can be employed to estimate theoretical parameters and 
confidence regions in several interesting cases. We consider here two of these, the large scale 
structure (LSS) of galaxies and the CMB. 

In the case of LSS surveys, the data usually consist of the fluctuations xi = 6n’/fi in the 
number counts of galaxies in the i-th cell in which the survey is partitioned. (We assume - 
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here for simplicity that the average density fi is fixed u priori. Otherwise, we can include 
it in the set of parameters to be estimated.) The main problem in applying the formalism 
developed so far to real situations is to choose a “good” set of theoretical parameters oj. 
In principle we can parametrize the statistical properties of the LSS in an infinite number 
of ways. However, the particular set of parameters we are going to adopt has been singled 
out in the current literature, both theoretical and observational, with very few exceptions. 
Assuming for the correlation function the power-law form t(r) = (ro/r)y, the cell-averaged 
cij is given by the following expression 

C’j = ~(‘~2)WR;(‘l)WR,(‘2)“1”2 7 J (49) 

where ~12 = Iri - I.21, and w& (WRj) is the normalized window function of characteristic 
size Ri (Rj) relative to the i-th (j-th) cell. If the cells i,j are fully characterized by a size R 
and a separation sij, the integral (49) can be written as 

cij = J(7, R/sij)(R/ro)-‘l (50) 

where J(Y, R/sij) is a dimensionless function of y and R/sij. Following standard work (e.g. 
Peebles 1980) we will then write for the higher-order correlation functions the following 
expressions 

k ijk = &(,$p + pgk + ,.$k&j) , 

kijkl = R, C &p;ckl + & C ,+jCikCil , 
(51) 

2 3 

where x2 (x3) means summing over all the 12 (4) tree graphs with at most two (three) 
connecting lines per vertex (i.e. summing over topologically equivalent graph configurations). 
Note that we define Q, R, and Rb in terms of the cell-avemged correlation functions, rather 
than in terms of c(r), as currently done. Our definition has the advantage that from Q, R, 
and Rb one can obtain directly the often quoted scaling coefficients 5’3 = 3Q and S, = 
12R, + 4R6, without complicated integrals over the window functions. The drawback is that 
our Q, &, Rb cannot be compared directly to the values reported in literature, albeit the 
difference should be very small. 

Several analysis of large scale surveys show that Q, R,, Rb are fairly constant over several 
scales, and of order unity. On scales larger that M lOh-’ Mpc, however, the power-law form 
of c’j is not longer acceptable. For such scales is preferable to parametrize instead the power 
spectrum P(k) and to use the identity 

<(rij> = L Jm kP(k) sin(krij)dk , 2iT’rij 0 

from which, using Eq. (49), 

&i 1 
O” =- J 2?r2Sij 0 

kP( k)Wz sin( ksij)dk , 

(52) 

(53) - 
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where wk is the Fourier transforms of the window function. Various forms of P(k) have 
been proposed so far. For instance, one can assume the simple functional form proposed by 
Peacock (1991), with its two scale parameters ko, k1, or the CDM-like form of Efstathiou, 
Bond SC White (1992), involving an overall normalization and a dimensionless parameter F. 
To give an idea of how big the non-G corrections are, let us assume to have N independent 
data (i.e., data on cells at separations much larger than the correlation length) and let us 
estimate the parameters 71, ~2 of Eq. (48). Since Tr,ir Tzyz,i and bi are the same for all the N 
data, one has (dropping the subscript i) ~2 = kiiii(x)/a4 = &a2 and 712 = Sia2. For S3 x 3 
and S4 z 20, as large scale surveys suggest, one gets 72 M 20a2, and 7: x 100~. For scales 
around 10 h-’ Mpc or so, where a2 - - 1, 71, y2 are then very large, but they decrease rapidly 
for larger scales. On scales larger than 30 h-’ Mpc or so, yr,y2 are small enough to use the 
MEE also near the tails. 

The non-G LF allows a determination of the parametric set in such a way that the best 
estimate of one parameter depends on all the other ones, unlike the common procedure of 
estimating one parameter fixing the others (in particular, fixing the non-Gaussian parameters 
to zero). For instance, the usual way of estimating re, y is to find the best x2 power-law fit to 
the observed correlation function, which amounts to assume a Gaussian distribution around 
the mean values. Both the estimate and the confidence region would then be corrected by the 
higher order terms. However, as already mentioned, we can use the MEE for estimating the 
higher-order moments themselves only if enough terms have been included in the expansion. 
The reason is clear by looking at the Eq. (7): at this order of truncation, the expansion is 
linear in the fourth order moment, and as a consequence it has no maximum when derivated 
with respect to, e.g., R, or Rb. The best estimate does not exist at all. We can give however 
an estimate for Q, and we can expect it to be a good estimate as long as it is in the regime 
in which the MEE holds. A simple way to check this is to see whether for that value of 
Q the function M(xo) is well-behaved, i.e. is a monotonic increasing function bounded by 
zero and unity. In principle, one can proceed further, including more and more terms in the 
LF, so that one can reach not only a higher degree of approximation, but also estimate the 
error introduced by the truncation itself. Needless to say, these goods come at the price of 
a factorial increase in algebraic complication. 

Once we have chosen our parameter set, the only remaining difficulty is to evaluate the 
coefficients cl , ..c5. Let us remark that the Eqs. (51) are valid with respect to the original 
data xi, while we need the correlation functions for y’ = Ajxj to evaluate cl, ..c5. The relation 
between the two sets of correlation functions is provided by Eq. (35). The evaluation of 
Cl , ..c5 is straightforward. One needs simply to scan all the possible combinations of indexes 
i,j,k,.. and sum only those tensor components with all equal indexes (for c2 and cg), or 
those with all paired indexes (for cl and cs), or finally those with a (2,4) index structure (for 
cd). A more explicit expression for the coefficients can also be found in specific cases (e.g. 
exploiting the symmetry under index permutation of the tensors in (51)), but the general 
calculation can be coded so easily on computers that we prefer to leave it in the form (46). 
Let us then summarize the steps needed to analyze a given set of data. First, one selects 
a value for the chosen parameter set inside a plausible range. Second, one diagonalizes, for 
that particular parameter set, the quadratic form X’Xijxj so to determine the matrix A’. 
such that y’ = Ajxj. Third, one evaluates the five coefficients cl, ..c5 summing over all th: 
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required tensor components. Fourth, one evaluates L and M(xo) for the selected parameter 
set. Fifth, one repeates the four previous steps spanning a reasonable range in the parameter 
space. Finally, the values for which L has a maximum inside the range, if any, are the best 
estimate of the set of parameters, while the region for which ~/2 < M(xo) < 1 - e/2 defines 
their joint confidence region. 

For the CMB, the procedure is very similar. The major difference is the set of parameters 
we are interested in. For simplicity, let us consider an experiment like COBE, in which the 
large angular beam size is mainly designed to study the Sachs-Wolfe effect of primordial 
fluctuations. The two-point angular correlation function can be conveniently written as 

“j = 5 CIW(P)fi(COS*ij), (54 
1=2 

where oij is the angular separation between the i-th and j-th pixel on the sky, W,(p) is 
the observational window function relative to a beam angular size p, Pl is the Legendre 
polynomial of order E, and Cl is defined in terms of the multipole coefficients a? as 

Cl = f: la;“I”. 
m=-1 

For the Sachs-Wolfe effect of fluctuations with power spectrum P = Ak” we can derive the 
expected variance of the amplitudes a? as (e.g. Kolb & Turner 1989) 

u; z< la;112 >= 
CQf'r&>" rl(9 - Wlr[Z + (n - WI 

5 
q3+ 72)/2]r[l+ (5- g/2] 9 (56) 

where Qzs is the expected quadrupole signal derived from the correlation function. The 
theoretical value for Cl is then Cc = (21 + l)$, and it depends uniquely on Qps# and n. 
Finally, we rewrite Eq. (54) as 

“j = g(Zz + l)$W~(P)P,(COSCrij). (57) 
1=2 

The correlation function for the Sachs-Wolfe temperature fluctuations is then parametrized 

by Qi$ and n. The situation for the higher-order correlation functions is much less well 
established. Non-Gaussianity in the CMB is predicted by several models, like topological 
defect theories, or non-standard inflation, or can be induced by some kind of foreground 
contamination. There is not, however, a single, widely accepted way to parametrize non- 
Gaussianity in this context (see e.g. Luo & Schramm 1993 for some possible alternatives). 
A very simple possibility is to assume for the CMB n-point correlation functions the same 
kind of scaling observed in LSS. Preliminary constraints on the 3-point parameter from the 
COBE data have already been published (Hinshaw et al. 1994). Some model of inflation 
predicts indeed this sort of scaling, although the expected amplitude of the non-Gaussian 
signal in standard models is far below observability (Falk, Rangarajan & Srednicki 1993; 
Gangui et al. 1994). For small scale experiments, the cij parametrization is different, and 
often a Gaussian shape c’j = ~0 exp( -o~/2o~), is assumed. The formalism here presented 
can be clearly applied to any desired form of the correlation function. - 
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7 Conclusions 

Let us summarize the results reported here. This work is aimed at presenting a new analytic 
formalism for parametric estimation with the maximum likelihood method for non-Gaussian 
random fields. The method can be applied to a large class of astrophysical problems. The 
non-Gaussian likelihood function. allows the determination of a full set of parameters and 
their joint confidence region, without arbitrarily fixing some of them, as long as enough 
non-linear terms are included in the expansion. The CR for all the relevant parameters 
can be estimated by approximating the distribution function for the parameter estimators 
around its peak by a Gaussian, as in Sect. 3. To overcome this level of approximation, 
in Sect. 4 we generalized the x2 method to include non-Gaussian corrections. The most 
interesting result is then that the CR for the parameters which enter xi is systematically 
widened by the inclusion of the non-Gaussian terms, in the limit of E + 0. Two experiments 
producing incompatible results can then be brought to agreement when third and fourth- 
order cumulants are introduced. In the more general case, the CR may extend or reduce. 

While we leave the analysis of real data to subsequent work, we displayed some prelimi- 
nary comments on the application to two important cases, large scale structure and cosmic 
microwave background. 

There are two main limitations to the method. One is that we obviously have to truncate 
the MEE to some order, and consequently the data analysis implicitly assumes that all the 
higher moments vanish. The second limitation is that the method is not applicable to 
strongly non-Gaussian field, where the MEE breaks down. This can be seen directly from 
Eq. (45): for arbitrarily large constants cl - c5 the likelihood integral is not positive-definite, 
although always converge to unity. Assuming the scaling relation of Eq. (51), for instance, 
the condition c’j < 1 will ensure that the higher order terms are not dominating over the 
lower terms, as long as the scaling constants are of order unity. Basing upon the current 
understanding of the matter clustering, we expect the condition of weak non-Gaussianity to 
hold for scales ranging from N 30h-’ Mpc to the horizon scale. 
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Figure caption 

Fig. 1 a) Plot of M(xs) as a function of x:/N and of the dimensionless kurtosis 72, 
for yr = 0, N = 10. For ry2 = 0 we return to the usual x2 cumulative function. Notice 
how for large kurtosis 72 the cumulative function M(xe) develops minima and maxima, 
indicating that the MEE is breaking down. b) Contour levels of M(xo) corresponding to 
it4 = .Ol,.l, .2,.3, .7, .8, .9, .Ol, from left to right. Notice how the limits for ~0 broaden for 
increasing 72. 

Fig. 2 a) Same as in Fig. la, now with more data, N = 100. b) Contour levels of M(xe) 
for the same values as in Fig. 1 b. The CR is now much smaller than previously. 

Fig. 3 e) Same as in Fig. la, now with ~2 = 0, N = 10, and varying yr. 6) Contour 
levels of M(xa) for the same values as in Fig. 1 b. 

Fig. 4 u) Same as in Fig. la, now with 72 = 0, N = 100, and varying yr. b) Contour 
levels of AI for the same values as in Fig. 1 b. 
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